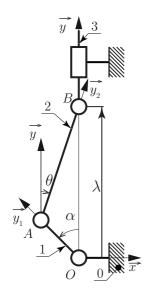
Outils de résolution cinématique

1 Objectif

1.1 Exemple: bielle manivelle



Le mécanisme bielle manivelle permet de transformer une rotation d'angle θ en une translation de déplacement λ (OA = a et AB = b).

$$\lambda = a\cos\alpha + \sqrt{b^2 - a^2\sin^2\alpha}$$

2 Fermeture de chaine cinématique

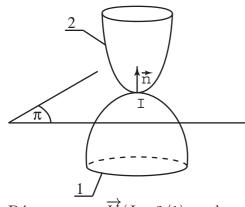
Cas du contact ponctuel entre deux solides 3

Soit \Re_0 un repère fixe.

Soient 1 et 2 deux solides en mouvement par rapport à \Re_0 , défini par $\{\mathcal{V}_{1/0}\}$ et $\{\mathcal{V}_{2/0}\}$, en contact ponctuel en un point I.

On peut alors écrire $\{\mathcal{V}_{2/1}\}$ le torseur cinématique de 2 par rapport à 1. On note :

$$\left\{\mathcal{V}_{2/1}\right\} = \left\{\begin{array}{c} \overrightarrow{\Omega}(2/1) \\ \overrightarrow{V}(I \in 2/1) \end{array}\right\}_{I}$$

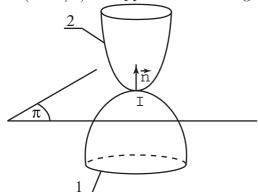


On note π le plan de tangence entre 1 et 2 au point de contact I, et \overrightarrow{n} la normale unitaire au plan π en I de 1 vers 2.

Décomposons $\overrightarrow{V}(I \in 2/1)$ en deux vecteurs :

- \overrightarrow{V}_n projection orthogonale $\overrightarrow{V}(I \in 2/1)$ sur \overrightarrow{n} , et $\overrightarrow{V}_t = \overrightarrow{V}(I \in 2/1) \overrightarrow{V}_n$, projection orthogonale de $\overrightarrow{V}(I \in 2/1)$ dans π . Condition de non-décollement : $\overrightarrow{V}_n = \overrightarrow{0}$

 $\overrightarrow{V}(I\in 2/1)$ est appelée vitesse de glissement entre 2 et 1.



Décomposons $\overrightarrow{\Omega}(2/1)$ en deux vecteurs :

- $\overrightarrow{\Omega}_n$ projection orthogonale de $\overrightarrow{\Omega}(2/1)$ sur \overrightarrow{n} , appelé vitesse de pivotement; et $\overrightarrow{\Omega}_t$ projection orthogonale de $\overrightarrow{\Omega}(2/1)$ sur π , appelé vitesse de roulement.

3.1 Mouvement et contact ponctuel

